226e Object-Oriented Programming with C++
The sports class might look like:

class sports

{

protected:
float score;

public:
void get_score{float);
void put scere(void);

e

The result will have both the multilevel and multiple inheritances and its declaration
would be as follows:

class result : public test, public sports

ki
Where test itself is a derived class from student. That is

class test : public student

Program 8.5 illustrates the implementation of both multilevel and multiple inheritance.

HYBRID INHERITANCE

#include <iostream
using namespace std; .

class student

{
protected:

int roll_number;

public:
void get_number{int a) L]
{

roll_number = a;
{Contd)

I
Copyrighted material



Inheritance: Extending Classes

i
void put_number(void)

[
}

cout << "Roll No: " << roll_number << *\n";

class test : public student

{
protected:
float partl, part?:

public:
void get_marks(float x, float y)
{

1
void put marks(void)

{

partl = x; part2 = y;

cout << "Marks obtaimed: " <<-"\n"
<< "Partl = " << partl << "\n"
<< "Part? = " << part? =< "\n":

I}

class sports

{
protected:
float score;
public:
void get_score(float s)

{
)
void put_score(void)

{
)

SCore = 8§

cout << "Sports wt: " =< score << "\n\n";
H

class result : public test, public sports
{ o
float total;
public:
void display(void);

*227

(Contd)

Copyrighted material



228 Object-Oriented Programming with C++

1

yoid result :: display(void)
{

total = partl + part2 + score;

put_number();
put_marks();
put_score();

cout << "Total Score: " << total =< "\n";

I!

int main()

I
result student .1;
student_1.get number{1234);
student 1.get marks(27.5, 33.0);
student 1.get score(6.0);
student 1.dispiay(};

return 0;

PROGRAM B.5

Here is the output of Program 8.5:

Rall Mo: 1234
Marks obtained:
Partl = 27.5
Part? = 33
Sports wt: 6

Total 5core: 66.5

IE.EI' Virtual Base Classes

We have just discussed a situation which would require the use of both the multiple and
multilevel inheritance. Consider a situation where all the three kinds of inheritance, namely,
multilevel, multiple and hierarchical inheritance, are involved. This is illustrated in
Fig. 8.12. The ‘child’ has two direct base classes ‘parentl’ and ‘parent2’ which themselves
have a common base class ‘grandparent’. The ‘child' inherits the traits of ‘grandparent’ via
two separate paths. It can also inherit directly as shown by the broken line. The ‘grandparent’
is sometimes referred to as indirect base class.



